-	-	-		-	鯔
	STATE OF THE PERSON NAMED IN	200000000000000000000000000000000000000		2000	195

BAR, MG / Sammenmanning

MARKET MUMERICANIA COMPANIA

I Semester M.Sc. Degree (CBSS - Reg./Sug./Imp.) Examination, October 2022 (2019 Admission Onwards) MATHEMATICS MATICOA: Basic Topology

THERE! 2 HOWE

Max Mades (8)

\$ 6508 - B

FROMEN ANY YOUN CHARLONS NOW WIS PARL BACK CHARLON CARROS & MORKS. (AXACLE)

- 1. FILLIE WAR STATE O-CHRONOLONIAL TO SPACE IS LOUNTY DISCONNECTED.
- 2. Let X be a set with at least two members and let Y be the trivial topology on X. THEN SHOW WAR CL, I'V IS NOT MERKIZBERG.
- 3. Define usual topology and loner limit topology on 12.
- A, Let (X, T) be a topological space, let A be a subset of X and let B be a basis for T. Then prove that its rick ! B = 13 is a trasis for the subspace topology on A.
- 5. Let (X_4,T_4) and (X_2,T_2) be Hausdorff spaces and let T be the product topology on X = X4 x X9. Then prove that (X, T) is a Hausdorth space.
- 6, Examine whether \$ = 10) with usual topology is connected or not.

PART-B

because any four questions from this Part without omitting any Unit. Each question (4×16=64) GATHER 16 THAINS

Unit == 1

- 7, a) Let it he the usual metric for 100, Then show that $A = \{(x_1, x_2, ..., x_n) \in \mathbb{R}^n : \text{for each } i = 1, 2, ..., n, x_i \text{ is rational} \}$ is a countable dense subset of lift,
 - to Prove that every complete metric space is of the second category.

P.T.O.

- c) Let (X, \mathcal{T}) be a topological space, let (Y, d) be a metric space, let $f: X \to Y$ be a function and for each $n \in \mathbb{N}$, let $f_n: X \to Y$ be a continuous function such that the sequence $\langle f_n \rangle$ converges uniformly to f. Then prove that f is continuous.
- 8. a) Prove that a family \mathcal{B} of subsets of a set X is a basis for some topology on X if and only if : (1) $X = \cup \{B : B \in \mathcal{B}\}$ and (2) if B_1 , $B_2 \in \mathcal{B}$ and $x \in B_1 \cap B_2$, then there exists $B \in \mathcal{B}$ such that $x \in B$ and $B \subseteq B_1 \cap B_2$.
 - b) Let T and T' be topologies on a set X and let \mathcal{B} and \mathcal{B}' be bases for T and T' respectively. Then prove that the following conditions are equivalent:
 - i) T' is finer than T.
 - ii) For each $x \in X$ and each $B \in \mathcal{B}$ such that $x \in B$, there is a member B' of \mathcal{B} such that $x \in B'$ and $B' \subseteq B$.
 - c) Show that the lower-limit topology on $\mathbb R$ is not the usual topology on $\mathbb R$.
- a) Let A be a subset of a topological space (X, T), and let x ∈ X. Then prove that x ∈ Ā if and only if every neighborhood of x has a nonempty intersection with A.
 - b) Let A be a subset of a topological space (X, T). Then prove that $\bar{A} = A \cup A'$.
 - c) Prove that every second countable space is separable.

Unit - II

- 10. a) Let $\{(X_{\alpha}, \mathcal{T}_{\alpha}) : \alpha \in \Lambda\}$ be an indexed family of topological spaces, and for each $\alpha \in \Lambda$, let $(A_{\alpha}, \mathcal{T}_{A\alpha})$ be a subspace of $(X_{\alpha}, \mathcal{T}_{\alpha})$. Then prove that the product topology on $\Pi_{\alpha \in \Lambda}$ A_{α} is the same as the subspace topology on $\Pi_{\alpha \in \Lambda}$ A_{α} determined by the product topology on $\Pi_{\alpha \in \Lambda}$ X_{α} .
 - b) Let $\{(X_{\alpha}, \mathcal{T}_{\alpha}) : \alpha \in \Lambda\}$ be an indexed family of first countable spaces, and let $X = \prod_{\alpha \in \Lambda} X_{\alpha}$. Then prove that (X, \mathcal{T}) is first countable if and only if \mathcal{T}_{α} is the trivial topology for all but a countable number of α .
- 11. a) Let (A, \mathcal{T}_A) be a subspace of a topological space (X, \mathcal{T}) . Prove that a subset C of A is closed in (A, \mathcal{T}_A) if and only there is a closed subset D of (X, \mathcal{T}) such that $C = A \cap D$.
 - b) Let (X,\mathcal{T}) and (Y,\mathcal{U}) be topological spaces, let $f:X\to Y$ be a function, and let $\{U_\alpha:\alpha\in\Lambda\}$ be a collection of open subsets of X such that $X=\bigcup_{\alpha\in\Lambda}U_\alpha$ and $f\mid_{U\alpha}:U_\alpha\to Y$ is continuous for each $\alpha\in\Lambda$. Then prove that f is continuous.
 - c) Prove that the function $f: \mathbb{R} \to \mathbb{R}^2$ defined by f(x) = (x, 0) for each $x \in \mathbb{R}$ is an embedding of \mathbb{R} in \mathbb{R}^2 .

- 12. a) Let (X, T), (Y_1, U_1) and (Y_2, U_2) be topological spaces and let $f: X \to Y_1 \times Y_2$ be a function. Then prove that f is continuous if and only if π_1 of and π_2 of are continuous.
 - b) Let (X_1, T_1) and (X_2, T_2) be Hausdorff spaces, and let T denote the product topology on $X = X_1 \times X_2$. Then prove that (X, T) is Hausdorff.
 - c) Let (X_1, \mathcal{T}_1) and (X_2, \mathcal{T}_2) be topological spaces, and let π_1 and π_2 denote the projection maps. Then prove that $S = \left\{ \pi_1^{-1} \left(\mathsf{U} \right) \colon \mathsf{U} \in \mathcal{T}_1 \right\} \cup \left\{ \pi_2^{-1} \left(\mathsf{V} \right) \colon \mathsf{V} \in \mathcal{T}_2 \right\}$ is a subbasis for the product topology on $\mathsf{X}_1 \times \mathsf{X}_2$.

Unit - III

- 13. a) Let $\{(X_{\alpha}, \mathcal{T}_{\alpha}) : \alpha \in \Lambda\}$ be a collection of topological spaces, and let \mathcal{T} be the product topology on $X = \prod_{\alpha \in \Lambda} X_{\alpha}$. Then prove that (X, \mathcal{T}) is locally connected if and only if for each $\alpha \in \Lambda$, $(X_{\alpha}, \mathcal{T}_{\alpha})$ is locally connected and for all but a finite number of $\alpha \in \Lambda$, $(X_{\alpha}, \mathcal{T}_{\alpha})$ is connected.
 - b) Prove that a topological space (X,\mathcal{T}) is locally connected if and only if each component of each open set is open.
 - c) Let (X, \mathcal{T}) be a topological space and suppose $X = A \cup B$, where A and B are nonempty subsets that are separated in X. If H is a connected subspace of X, then prove that $H \subseteq A$ or $H \subseteq B$.
- 14. a) Let (X, T) be a topological spaces and let $A \subseteq X$. Then prove that the following conditions are equivalent :
 - i) The subspace (A, T_A) is connected.
 - ii) The set A cannot be expressed as the union of two nonempty sets that are separated in X.
 - iii) There do not exist U, $V \in \mathcal{T}$ such that $U \cap A \neq \emptyset$, $V \cap A \neq \emptyset$, $U \cap V \cap A \neq \emptyset$ and $A \subseteq U \cup V$.
 - b) Prove that the closed unit interval I has the fixed-point property.
 - c) Let (X,\mathcal{T}) be a topological space and suppose $X=A\cup B$, where A and B are nonempty subsets that are separated in X. If H is a connected subspace of X, then prove that $H\subseteq A$ or $H\subseteq B$.
- 15. a) Prove that each path component of a topological space is pathwise connected.
 - b) Show that the topologist's sine curve is not pathwise connected.
 - c) Define path product of two paths in a topological space.